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Generalized binomial states: ladder operator approach

Hong-Chen Fu† and Ryu Sasaki
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

Received 11 June 1996

Abstract. We show that the binomial states (BS) of Stoleret al admit the ladder and
displacement operator formalism. By generalizing the ladder operator formalism we propose an
eigenvalue equation which possesses the number and the squeezed states as its limiting solutions.
The explicit forms of the solutions, to be referred to as thegeneralized binomial states(GBS), are
given. Corresponding to the wide range of the eigenvalue spectrum these GBS have as widely
different properties. Their limits to number andsqueezedstates are investigated in detail. The
time evolution of BS is obtained as a special case of the approach.

1. Introduction

The number and the coherent states of a quantized radiation field play important roles in
quantum optics and are extensively studied [1]. The binomial states (BS) introduced by
Stoler et al in 1985 [2], interpolate between themost non-classicalnumber states and the
most classicalcoherent states, and reduce to them in two different limits. Some of their
properties [2–4], methods of generation [2, 3, 5], as well as their interaction with atoms [6],
have been investigated in the literature. The BS is defined as a linear superposition of
number states in anM-dimensional subspace

|η, M〉 =
M∑

n=0

βM
n (η)|n〉 (1.1)

whereη is a real parameter satisfying 0< η < 1 (‘probability’), and

βM
n (η) =

[(
M

n

)
ηn(1 − η)M−n

]1/2

. (1.2)

The name ‘binomial state’ comes from the fact that their photon distribution|〈n|η, M〉|2 =
|βM

n (η)|2 is simply a binomial distribution with probabilityη. In the two limitsη → 1 and
η → 0 (in both cases ‘definite probability’) it reduces to number states:|1, M〉 = |M〉 and
|0, M〉 = |0〉, respectively. In a different limit ofM → ∞, η → 0 with ηM = α2 fixed (α
real constant),|η, M〉 reduces to the coherent states (not the most general ones, only those
with real amplitudeα), which corresponds to the Poisson distribution in probability theory
[7]. It is well known that the binomial distribution tends to the Poisson distribution in the
above limit [7]. The notion of BS was also generalized to the intermediate number-squeezed
states [8] and the number-phase states [9], as well as theirq-deformation [10].
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It is well known that the number and the coherent states are the eigenstates of the number
operatorN and the annihilation operatora, respectively. So we naturally ask if BS is an
eigenstate of a proper linear combination of the number operator and the (density-dependent)
annihilation operator, or in other words, if it admits aladder operator definition. The answer
is positive. In section 2 we show that BS is the eigenstate of the combination of number
operatorN and raising operatorJ+

M = √
M − Na of SU(2) via its Holstein–Primakoff

realization. This ladder operator formalism enables us to easily derive theirdisplacement
operator formalism. The result shows that BS is in fact aspecial SU(2) coherent states,
as noted in [10].

In section 3, we generalize the ladder operator approach of BS towards the generalized
binomial state (GBS) in the sense that they reduce to the number and coherent, squeezed
states in certain limits. Recall that the squeezed states of the radiation field are the eigenstates
of a linear combination of its creation and annihilation operators. So we replace the linear
combination of raising and lowering operators ofSU(2) instead of the raising operator
in the ladder operator form of binomial states and thus obtain an eigenvalue equation of
proper linear combination ofall generators ofSU(2) (to be referred to as GBS equation
for convenience). The GBS equation is exactly solved using a method developed in the
investigation of the squeezed states ofSU(1, 1) algebras [13] and itsM + 1 distinct
eigenvalues and corresponding eigenstates are found. In section 4 we show that these
solutions degenerate to the number, coherent and squeezed states in different limits. In
section 5 we point out that BS and its time evolution are the special case of GBS equation
with a special eigenvalue. We conclude in section 6.

2. Ladder operator approach to BS

Let us first consider the ladder operator formalism of BS. To this end we suppose that the BS
is an eigenstate of a linear combination of the number operatorN and a density-dependent
annihilation operatorf (N)a, namely

[µN + νf (N)a]|η, M〉 = ρ|η, M〉 (2.1)

where constantsµ, ν, ρ and a functionf (N) are to be determined. Taking into account
the fact thatµ = 1 in the limit η → 1 andµ = 0 in the coherent state limitη → 0, we
can simply chooseµ = √

η. Then, inserting the explicit BS (1.1) into (2.1), we obtain the
following equations:√

ηM(ρ − √
ηM) = 0√

1 − η(ρ − n
√

η) = ν
√

η(M − n)f (n) (n = 0, 1, . . . , M − 1)
(2.2)

from which we find

ρ = √
ηM ν =

√
1 − η f (N) = √

M − N. (2.3)

Substituting these results into (2.1), we obtain the ladder operator formalism of BS[√
ηN +

√
1 − η

√
M − Na

]
|η, M〉 = √

ηM|η, M〉. (2.4)

It is interesting that the operators appearing in the above equation (2.4) are the well known
Holstein–Primakoff realization of Lie algebraSU(2):

J 0
M ≡ M

2
− N J+

M ≡ √
M − Na J−

M ≡ a†√M − N. (2.5)
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In terms of theSU(2) generators, (2.4) is rewritten as[√
ηJ 0

M −
√

1 − ηJ+
M

]
|η, M〉 = −

√
ηM

2
|η, M〉. (2.6)

This characterization of the BS in terms of theSU(2) operators is consistent with the
original definition (1.1), (1.2) in the two limits of ‘definite probability’η → 1 andη → 0:

N |1, M〉 = M|1, M〉 a|0, M〉 = 0

respectively. To achieve the coherent state in some limit, we multiply
√

η on both sides of
(2.4). Then, considering the limitM → ∞ and η → 0 with fixed Mη = α2 (α is a real
constant) for finiten, we arrive at the equation

a|0, ∞〉 = α|0, ∞〉 (2.7)

which is nothing but the ladder (annihilation) operator definition of the coherent state.
Here we would like to remark that the binomial state is only one eigenstate of the

operator
√

ηN +√
1 − ηJ+

M corresponding to the eigenvalue
√

ηM. This operator generally
hasM + 1 eigenvalues and eigenstates since it is in fact an(M + 1) × (M + 1) matrix. In
section 5, the complete eigenvalues and eigenstates will be presented.

From the ladder operator form of BS we can easily derive its displacement operator
form. For this purpose, we identify

√
η = sinr,

√
1 − η = cosr, 0 < r < π/2. Then (2.6)

can be rewritten as

(cosrJ+
M − sinrJ 0

M)|η, M〉 = 1
2M sinr|η, M〉. (2.8)

Comparing (2.8) with the atomic coherent states and its ladder operator form† in [12], we
find that the BS can be written as

|η, M〉 = e−r(J+
M−J−

M)|0〉. (2.9)

So BS can be viewed as a specialSU(2) coherent state, as noted in [10].

3. GBS equation and exact solutions

On the basis of the above analysis, we shall propose a more general eigenvalue equation, the
GBS equation, which possesses the number and the squeezed states as its limiting solutions,
and present its exact solutions in this section.

From the discussions in section 2 we see that in the limitη → 0 andM → ∞ with fixed
ηM = α2,

√
ηJ+

M → αa. In fact, we also have
√

ηJ−
M → αa† in the same limit. Recall

that the squeezed states of a single mode radiation field can be defined as the eigenstates
of the operatorµa + νa†, where two complex numbersµ andν satisfy |ν/µ| < 1. So, to
achieve the GBS, we should replaceJ−

M in the (2.4) by the operatorµJ+
M +νJ−

M . (Note that
|ν/µ| < 1 was necessary for the convergence of an infinite series for the squeezed state. In
the GBS case such a constraint is not necessary since the operators are finite matrices.) In
summary, we propose the following equation:[√

1 − η(µJ+
M + νJ−

M) − √
ηJ 0

M

]
|β, δ〉 = δ|β, δ〉 (3.1)

whereβ = {µ, ν, η, M} andµ 6= 0 without loss of generality.
Equation (3.1) is an eigenvalue equation for an(M +1)×(M +1)-matrix. So, generally

speaking, it has up toM + 1 different eigenvalues. If we expand the state|β〉 in terms of
the number states, (3.1) will lead to a recursion relation with three terms, which is difficult

† Symbols here are different from those in [12]:J±
M → J∓, J 0

M → −Jz, M → 2J and |0〉 → | − J 〉.
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to solve in its full generality. Here we shall use a method used in the investigation of the
squeezed states ofsu(1, 1) algebra [13]. We write the state|β〉 in the form

|β, δ〉 = D(ζ)‖β, δ〉 D(ζ) = exp(ζJ+
M − ζ ∗J−

M) (3.2)

where the parameter

ζ = reiθ (3.3)

will be determined later. Then by making use of the following relations:

D−1(ζ )J+
MD(ζ ) = J+

M cos2 r − J−
M sin2 re−2iθ − J 0

M sin(2r)e−iθ

D−1(ζ )J−
MD(ζ ) = J−

M cos2 r − J+
M sin2 re2iθ − J 0

M sin(2r)eiθ

D−1(ζ )J 0
MD(ζ ) = 1

2(J+
Meiθ + J−

Me−iθ ) sin(2r) + J 0
M cos(2r)

(3.4)

we obtain an equation for‖β, δ〉:
(A+J+

M + A−J−
M − A0J

0
M)‖β, δ〉 = δ‖β, δ〉 (3.5)

where

A+ =
√

1 − η(µ cos2 r − ν sin2 re2iθ ) − 1
2

√
ηeiθ sin(2r)

A− =
√

1 − η(ν cos2 r − µ sin2 re−2iθ ) − 1
2

√
ηe−iθ sin(2r)

A0 =
√

1 − η(µe−iθ + νeiθ ) sin(2r) + √
η cos(2r).

(3.6)

As an important step, we chooseζ such thatA− = 0, namely,

cos2 r
[√

1 − η(ν − µ tan2 re−2iθ ) − √
η tanre−iθ

]
= 0 (3.7)

where we have used the fact that cosr 6= 0 (otherwise,A− = −√
1 − ηµe2iθ 6= 0). Soζ is

determined by

µ
√

1 − η12 + √
η1 −

√
1 − ην = 0 1 = e−iθ tanr (3.8)

and in this case (3.5) is reduced to

A+J+
M‖β, δ〉 = (δ + A0J

0
M)‖β, δ〉. (3.9)

Let ‖β, δ〉 = ∑M
n=0 Cn|n〉 and insert it into (3.9). We obtain

CM(δ − MA0/2) = 0 (3.10)

Cn+1

√
(n + 1)(M − n)A+ = Cn(δ + A0M/2 − A0n) (n = 0, 1, . . . , M − 1). (3.11)

From (3.10) we have two possibilities:δ − MA0/2 = 0 or CM = 0. In the first case, we
can determine one eigenvalueδM = MA0/2 and its corresponding eigenstate from (3.11).
If CM = 0, we still have two possibilities:δ + A0M/2 − A0(M − 1) = 0 or CM−1 = 0.
Performing the analysis in the same way, we obtain all eigenvalues and eigenstates. In the
general case,CM = · · · = Ck+1 = 0 andCk 6= 0, k = 0, 1, . . . , M, (3.10) and (3.11) reduce
to

Ck(δ + MA0/2 − A0k) = 0 (3.12)

Cn+1

√
(n + 1)(M − n)A+ = Cn(δ + A0M/2 − A0n) (n = 0, 1, . . . , k − 1). (3.13)

From (3.12) we obtain the eigenvalues

δk = 1
2A0(2k − M) k = 0, 1, . . . , M (3.14)

which are non-degenerate. Substituting (3.14) into (3.13), we can determine the
corresponding eigenstates. We evaluate them for two typical cases:
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Case 1. If A+ is non-vanishing, the corresponding eigenstates are obtained as

‖β, δk〉 = C0

k∑
n=0

(
k

n

) (
M

n

)−1/2

An
0A

−n
+ |n〉. (3.15)

Those eigenstates of different eigenvalues are linearly independent. Using theidentity
method developed in [14], we can rewrite the eigenstates‖β, δk〉 in the exponential form

‖β, δk〉 = C ′
0 exp

{
A0

A+

√
k − N + 1

M − N + 1
J−

k

}
|0〉 (3.16)

where we have used the following identity:

(f (N)a†)n|0〉 = (a†)nf (1)f (2) . . . f (n)|0〉 with f (N) = k − N + 1√
M − N + 1

. (3.17)

Let us discuss the casesk = 0 andM in more detail. In the case ofk = M, (3.15) becomes

‖β, δM〉 =
M∑

n=0

[(
M

n

)
η′n(1 − η′)M−n

]1/2

ein(θ0−θ+)|n〉 (3.18)

where

η′ = |A0|2
|A0|2 + |A+|2 A0 = |A0|eiθ0 A+ = |A+|eiθ+ . (3.19)

It is obvious that the state (3.18) is a binomial state with a very special phase structure. So
the eigenstate|β, δM〉 is finally obtained as

|β, δM〉 = D(ζ)‖β, δM〉 (3.20)

which is thedisplaced binomial state. In the case ofk = 0, it is easy to see from (3.15)
that ‖β, δ0〉 = |0〉 and

|β, δ0〉 = D(ζ)|0〉 (3.21)

is a binomial state with a phase (see (2.9)).
Case 2. Next let us consider a very special caseA+ = 0. It is obvious that the spectrum

is given by (3.14) but the eigenstates are determined by

Cn(δk + A0M/2 − A0n) = 0 (n = 0, 1, . . . , k − 1) Ck 6= 0 (3.22)

from which we find thatCn = 0 (n 6= k), namely, ‖β, δk〉 = |k〉, the number states.
Therefore, we finally obtain

|β, δk〉 = D(ζ)|k〉 (3.23)

whereζ should satisfy (3.8) and an additional equation (A+ = 0)√
1 − ην1∗2 + √

η1∗ −
√

1 − ηµ = 0 1∗ = eiθ tanr. (3.24)

By comparing (3.8) and (3.24) we find that these two equations are simultaneously satisfied
if η = 1 or

µ = ν∗.

In the next section we shall consider the limitη → 1 in which the binomial states tend to
the number states.

In conclusion, we have found that (3.1) hasM+1 distinct eigenvalues and corresponding
linearly independent eigenstates and GBS equation (3.1) finally takes the form[√

1 − η(µJ+
M + νJ−

M) − √
ηJ 0

M

]
|β, δk〉 = A0

2
(2k − M)|β, δk〉. (3.25)
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4. Limit to number and squeezed states

In this section we discuss the limiting cases of the GBS obtained in the previous section.
Let us first consider the limitη → 1. In this case (3.8) requires1 = 0 or sinr = 0
(r = mπ : m integers) andA0 → 1 and (3.25) reduces to

N |µ, ν, 1, M; δk〉 = k|µ, ν, 1, M; δk〉. (4.1)

Namely,|β, δk〉 goes to the number state|k〉.
The same conclusion can be reached by a different path. From the disentangling theorem

[11]

D(ξ) = exp(ξJ+
M − ξ ∗J−

M) = exp(−τ ∗J−
M) exp[− ln(1 + |τ |2)J 0

M ] exp(τJ+
M) (4.2)

where ξ = |ξ |e−iφ , τ = e−iφ tan|ξ |, we haveD(mπeiθ ) = 1 for any m. Furthermore,
from (3.6) we haveA+ = A− = 0. So the case 2 in the previous section applies and
‖β, δk〉 = |k〉. We finally arrive at the same conclusion as (4.1):

|β, δk〉 η→1−→ |k〉.
Therefore we conclude that the limit to the number states is true not only for the binomial
states (µ = 1, ν = 0 andk = M) but for the more general GBS equations and all of their
eigenstates.

Then we turn to the limit to the coherent and the squeezed states. As before we let
M → ∞, η → 0 with fixed ηM = α2. However, in the present context we have a whole
range of the parameterk, 0 6 k 6 M, whose limit must be specified, too. We consider two
simple cases.

Case 1. Whenk = K +p, whereK = M/2 for evenM and(M ±1)/2 for oddM, and
p is finite. In this case(2k−M) is a finite integer and

√
η(2k−M) goes to zero in the limit

η → 0. Multiplying both sides of (3.25) by
√

η and then taking the limitM → ∞, η → 0
with fixed ηM = α2 andn, we arrive at(

α(µa + νa†) − α2

2

)
|µ, ν, 0, ∞; δk〉 = 0. (4.3)

So (4.3) becomes

(µa + νa†)|µ, ν,∞; δk〉 = α

2
|µ, ν,∞; δk〉 (4.4)

from which we see the state|µ, ν, 0, ∞; δk〉 is a squeezed state.
Case 2. When(2k −M) ∝ M, for example,k = M −p or k = p, wherep is finite. In

these cases, asη → 0 andM → ∞ for fixed ηM = α2,
√

ηA0(2k − M) becomes infinite.
This conclusion is based on the assumption thatA0 remains finite asη → 0, which is true
providedν 6= 0:

A0 = 2
√

1 − η(µ + νe2iθ )
1

1 + |1|2 + √
η cos(2r) (4.5)

1 = − 1

2µ

√
η

1 − η
± 1

2µ

√
η

1 − η
+ 4µν. (4.6)

(The exceptional case ofν = 0 will be discussed in some detail in the next section.)
Therefore in these cases the naiveη → 0 andM → ∞ limit does not exist for the GBS.
In order to define proper limits in these cases we have to consider the situation in whichµ

andν areη dependent.
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5. The caseν = 0: time evolution of BS

In this section we consider the special caseν = 0, for which noSU(2) rotation is necessary
to makeA− = 0, i.e.D(ζ) = 1. The eigenvalues and eigenstates are directly obtained from
(3.14) and (3.15), (3.16) withA0 = √

η andA+ = µ
√

1 − η:

δk = 1
2

√
η(2k − M) (5.1)

|β, δk〉 = D0 exp

{
µ−1

√
η

1 − η

√
k − N + 1

M − N + 1
J−

k

}
|0〉 (5.2)

= D′
0

k∑
n=0

(
k

n

) (
M

n

)−1/2 √
ηn(1 − η)k−nµ−n|n〉 (5.3)

where D0 and D′
0 are normalization constants. In particular, ifµ = 1, we recover the

binomial states fork = M and find all the other eigenstates of the operator in (2.4). All
these states fork 6= M are new. Ifµ ≡ |µ|eiφ 6= 1, we shall see that|µ| is not essential but
that its phase is related to the time evolution of the states|β, δk〉. In fact |µ| dependence
in (5.3) can be absorbed by a new parameterη̄ = η/(η + |µ|(1 − η)), which also satisfies
0 < η̄ < 1. So, without loss of generality, we suppose|µ| = 1 in the following. To
understand the physical meaning of the phase of the parameterµ = eiφ , we consider the
time evolution of the states (5.3). Suppose that at the initial timet = 0, the radiation field
is in the state (5.3), then at any timet , it is in the stateU(t)|β, δk〉, whereU(t) = e−iHt/h̄ is
the evolution operator andH = ω(N + 1

2) is the Hamiltonian of the single-mode radiation
field. It is obvious that

U(t)|β, δk〉 = D′′
0

k∑
n=0

(
k

n

) (
M

n

)−1/2 √
ηn(1 − η)k−ne−in(φ+ωt/h̄)|n〉 (5.4)

from which we see that the phaseφ can be understood as the shift of the origin of the time.
The state|β, δM〉 is essentially the binomial state. It can also be understood as the

SU(2) coherent states. In fact, it is not difficult to see that

|β, δM〉 = exp(ξ ′J+
M − ξ ′∗J−

M)|0〉 (5.5)

whereξ ′ = −[arctan
√

η/(1 − η)]eiφ . From (5.5) we see that the states (5.3) are thegeneral
SU(2) coherent states due to the arbitrariness ofµ.

It is easy to see that the special cases discussed in the previous section (i)k = M/2+p,
(iia) k = M − p, (iib) k = p, (p: finite) reduce to the coherent states|αe−iφ/

√
2〉 (i),

|αe−iφ〉 (iia) and to the vacuum|0〉 (iib), respectively, in the limitM → ∞, η → 0 with
fixed ηM = α2.

6. Conclusion

We have found that, among the three methods for defining the coherent state of the radiation
field, the ladder and displacement operator methods can be generalized to the study of the
BS. The only exception is the minimum uncertainty method. This is understandable since
the BS is between themost non-classicaland themost classicalstates, not the most-classical
state (minimum uncertainty state).

On the basis of the analysis of BS we proposed a GBS equation and solved it exactly.
The eigenstates of the GBS equation corresponding toM + 1 distinct eigenvalues are all
obtained and their time evolution is discussed. These states range from thedisplaced
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binomial states(for k = M) to the binomial states (fork = 0). They degenerate to the
number states and the coherent and squeezed states in two different limits. The original
BS of Stoleret al is only an eigenstate of a special GBS equation (ν = 0 and eigenvalue√

ηM/2).
Further investigation of the statistical and phase properties of the GBS obtained in this

paper will be published elsewhere.
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